Титан и его сплавы

titan1Титановые сплавы —  сплавы на основе титана. Лёгкость, высокая прочность в интервале температур от криогенных (-250 С) до умеренно высоких (300-600 С) и отличная коррозионная стойкость обеспечивают титановым сплавам хорошие перспективы применения в качестве конструкционных материалов во многих областях, в частности в авиации и др. отраслях транспортного машиностроения.

Титановые сплавы получают путём легирования титана следующими элементами (числа в скобках — максимальная для промышленных сплавов концентрация легирующей добавки в % по массе): Al (8), V (16), Mo (30), Mn (8), Sn (13), Zr (10), Cr (10), Cu (3), Fe (5), W (5), Ni (32), Si (0,5); реже применяется легирование Nb (2) и Та (5). Как микродобавки применяются Pd (0,2) для повышения коррозионной стойкости и В (0,01) для измельчения зерна. Легирующие добавки имеют различную растворимость в a и b-Ti и изменяют температуру a/b-превращения.

Алюминий, а также кислород и азот, предпочтительнее растворяющиеся в a-Ti, повышают эту температуру по мере увеличения их концентрации, что ведёт к расширению области существования a-модификации; такие элементы называются a-стабилизаторами. Sn и Zr хорошо растворяются в обеих аллотропических модификациях титана и очень мало влияют на температуру a/b-превращения; они относятся к так называемым нейтральным упрочнителям. Все остальные добавки к промышленным титановым сплавам предпочтительнее растворяются в b-Ti, являются b-стабилизаторами и снижают температуру полиморфного превращения титана. Их растворимость в aи b-модификациях титана меняется с температурой, что позволяет упрочнять сплавы, содержащие эти элементы, путём закалки и старения.

SONY DSC

SONY DSC

В связи с наличием полиморфизма титана и его способностью образовывать твёрдые растворы и химические соединения со многими элементами диаграммы состояния титановые сплавы отличаются большим разнообразием. Однако в промышленных титановых сплавах концентрация легирующих элементов, как правило, не выходит за пределы твёрдых растворов на основе a-Ti и b-Ti и металлидные фазы обычно не наблюдаются.

В нелегированном титане, а также в сплавах титана с a-стабилизаторами и нейтральными упрочнителями нельзя зафиксировать высокотемпературную b-модификацию путём закалки ввиду наличия мартенситного превращения, в результате которого образуется вторичная a-фаза игольчатой формы. В сплавах же с b-стабилизаторами можно, в зависимости от концентрации, зафиксировать любое количество b-фазы вплоть до 100%. На сплошную b-структуру могут закаливаться двойные сплавы, содержащие не менее 4% Fe, 7% Mn, 7% Cr, 10% Mo, 14% V, 35% Nb, 50% Ta; эти концентрации называются критическими.

В закалённых сплавах докритического и критического составов (b-фаза является нестабильной и при последующей низкотемпературной обработке (старении) распадается с образованием дисперсных выделений вторичной a-фазы, что даёт эффект упрочнения. В сплавах закритического состава (например, Ti — 30% Mo) образуется стабильная b-фаза и эффекта упрочнения не наблюдается.

Общепринято деление промышленных титановых сплавов на 3 группы по типу структуры. К сплавам на основе a-структуры относятся сплавы с Al, Sn и Zr, а также с небольшим количеством b-стабилизаторов (0,5-2%). Ввиду незначительного количества или даже отсутствия в их структуре b-фазы они практически не упрочняются термической обработкой и поэтому относятся к категории сплавов средней прочности (sb = 700-950 Мн/м2; или 70-95 кгс/мм2). Листовая штамповка этих титановых сплавов возможна только вгорячую. Достоинства a-сплавов — отличная свариваемость, высокий предел ползучести и отсутствие необходимости в термической обработке, а также отличные литейные свойства, что важно для фасонного литья.

Малолегированные a-сплавы, а также относимый к этой группе технический титан, имеющие предел прочности менее 700 Мн/м2 (70 кгс/мм2), поддаются листовой штамповке вхолодную. Двухфазные a+ b-сплавы — наиболее многочисленная группа промышленных титановых сплавов. Эти сплавы отличаются более высокой технологической пластичностью, чем a-сплавы, и вместе с тем могут быть термически обработаны до очень высокой прочности (sb = 1500-1800 Мн/м2, или 150-180 кг/мм2); они могут обладать высокой жаропрочностью. К недостаткам двухфазных сплавов следует отнести несколько худшую свариваемость по сравнению со сплавами предыдущей группы, так как в зоне термического влияния возможно появление хрупких участков и образование трещин, для предотвращения чего требуется специальная термическая обработка после сварки.

Сплавы на основе b-структуры имеют наиболее высокую технологическую пластичность и хорошо поддаются листовой штамповке вхолодную; после старения приобретают высокую прочность; хорошо свариваются, но сварные соединения нельзя подвергать упрочняющей термической обработке из-за охрупчивания, что ограничивает применение сплавов этого типа. Др. недостатком (b-сплавов является сравнительно невысокая предельная рабочая температура — примерно 300 С; при более высоких температурах большинство сплавов этого типа становится хрупким.

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.